The 3027 is a three-phase, zero-cross SCR power controller. The controller provides control of electrical power to resistive loads by means of silicon controlled rectifiers connected in two of the three lines. Control of power is linear with respect to a command signal. The command signal is electrically isolated from the line and load voltage.

The model 3027 controller features a compact design, a single plug-in circuit card for ease of operation and an electrically isolated heatsink. All three line leads are fused. The unit accepts 4-20mA, 0-5Vdc, 0-10Vdc or potentiometer command signals.

Features:
- Electrical isolation of command signal from load and line voltages.
- Linear power with respect to command signal plus line voltage compensation.
- SCR Protection
- Compact size
- Sync-guard™
- Trans-Guard™
- Diagnostic Indicator
- Very fast cycle rate
- Underwriters Laboratories Listed
- Load & Line Fused
- Thermostat
- Internal Control Fuses

Applications:
- Resistive Loads

Description:

The model 3027 is a three-phase, zero-cross SCR power controller. The controller provides control of electrical power to resistive loads by means of silicon controlled rectifiers connected in two of the three lines. Control of power is linear with respect to a command signal. The command signal is electrically isolated from the line and load voltage.

The model 3027 controller features a compact design, a single plug-in circuit card for ease of operation and an electrically isolated heatsink. All three line leads are fused. The unit accepts 4-20mA, 0-5Vdc, 0-10Vdc or potentiometer command signals.
ADVANTAGES

Eliminates potential ground loops. Provides safe operation with inexpensive, non-isolated process controllers.

Provides a stable control loop because load power is proportional to command signal and is not affected by line voltage variations.

High Voltage Peak Rating with dV/dT Snubber and MOVs.

Size of enclosure and panel space are reduced.

Reduces synchronous operation of multiple SCR controllers to obtain a smoother power demand.

Eliminates DC load currents and therefore transformer overheating due to saturation from induced DC primary voltages.

Light emitting diode (LED) provides visual indication of controller operation.

Rapid on-off operation provides a nearly continuous flow of power.

Nationally Recognized Testing Facility.

Three primary legs fused.

Senses the heatsink temperature.

Protects circuit and control transformer.

BENEFITS

A less costly, more reliable means to achieve good process control.

Product quality remains constant.

SCR less likely to fail.

Snubber and MOV to protect against high frequency Transients and voltage spikes.

Valuable space is saved, enclosure costs are reduced.

Cooler operation of supply transformers, circuit breakers, etc., greatly reduces the possibility of voltage variations resulting multiple controllers cycling on and off at the same time.

Eliminates supply transformer problems caused by SCR controller operation. Increased transformer life.

Provides and easily understood means to troubleshoot by inexperienced personnel. Reduces down time.

Provides uniform heating, longer heater life and allows use with fast responding loads.

Tested for your safety.

Type “T” fuses protect SCRs and load.

Prevents overheating by shutting the unit off.

Removes power from control circuit on detection of high temperature.

ELECTRICAL CONNECTIONS
COMMAND SIGNAL CONNECTIONS

- **Control Mode(s):** Three-phase, Two-leg, zero-cross control.
- **Command Signal:**
 - Range: 4-20mA, 0-5Vdc, 0-10Vdc
 - Input Resistance: 300 ohms, 120K, 240K

SPECIFICATIONS

Command Signal Connections

- **Control Mode(s):** Three-phase, Two-leg, zero-cross control.
- **Command Signal:**
 - Range: 4-20mA, 0-5Vdc, 0-10Vdc
 - Input Resistance: 300 ohms, 120K, 240K

Power Circuit
- Inverse parallel Silicon Controlled Rectifiers (SCR's).

Operating Voltage
- 208 / 240 / 380 / 415 / 480 / 575 (+10%, -20%), 50/60 Hertz.
- Consult factory for other voltages.

Ambient Temperature
- Operating: 0° to 55°C
- Storage: -40° to 80°C

Humidity
- 0 to 90%, non-condensing.

SCR Protection
- 1400 Volt Peak dV/dT 200 Volts/second.

Diagnostic Indicator
- The frequency of operation of the LED is proportional to the command signal. It is "ON" when power is applied to the load.

Heat Dissipation
- Watts dissipated = 3 watts x line current.

Isolation
- Isolation between power circuit, command signal and ground is greater than 2500 volts RMS.

Linearity and Voltage Compensation
- Load power is linear with respect to the command signal. Variations in load power resulting from supply voltage variations are reduced by an average voltage feedforward technique.

Control Range
- 0 to 99.5% of supply voltage.
- dV/dT snubber circuits and MOV's are used to protect against high frequency transients (dV/dT) and voltage spikes.

Zero and Span
- Multiturn potentiometers provide adjustment of ±20% of span.

Mounting
- Controllers with fans (145 Amps and larger) may be mounted in any direction.
- Smaller controllers must be mounted with fins vertically.

Physical
- Weight:
 - 85, 145 & 175 Amp = 20 lbs.
 - 240, 295, 370 & 425 = 50 lbs.
- Dimensions: Refer to installation dwg.
- Approximate Shipping Weight and Box Size:
 - 85-175A: 20 Lbs, 14-14-14" Box Size
 - 240-425A: 47 Lbs, 18-18-16" Box Size
 - 500-1000A: 100 Lbs*, 30-30-16" Box Size
- * ships on a pallet, weight doesn’t include pallet

Current Rating

<table>
<thead>
<tr>
<th>Current rating</th>
<th>Continuous RMS amps at 55°C</th>
<th>KW 208Vac</th>
<th>240Vac</th>
<th>380Vac</th>
<th>415Vac</th>
<th>480Vac</th>
<th>575Vac</th>
<th>Controller Load Fuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>30.6</td>
<td>35.3</td>
<td>55.9</td>
<td>61.1</td>
<td>70.7</td>
<td>84.7</td>
<td>110A</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>52.2</td>
<td>60.3</td>
<td>95.4</td>
<td>104.2</td>
<td>120.6</td>
<td>144.4</td>
<td>175A</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>63.0</td>
<td>72.7</td>
<td>115.2</td>
<td>125.8</td>
<td>145.5</td>
<td>174.3</td>
<td>200A</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>86.5</td>
<td>99.8</td>
<td>158.0</td>
<td>172.5</td>
<td>199.5</td>
<td>239.0</td>
<td>300A</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>106.3</td>
<td>122.6</td>
<td>194.2</td>
<td>212.0</td>
<td>245.3</td>
<td>293.8</td>
<td>350A</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>133.3</td>
<td>153.8</td>
<td>243.5</td>
<td>266.0</td>
<td>307.6</td>
<td>368.5</td>
<td>450A</td>
<td></td>
</tr>
<tr>
<td>425</td>
<td>153.1</td>
<td>176.7</td>
<td>279.7</td>
<td>305.5</td>
<td>353.3</td>
<td>423.3</td>
<td>500A</td>
<td></td>
</tr>
</tbody>
</table>

Units over 425 Amps do not have internal line fuses.
Separate 120 Volt power may be required to power the firing circuit and cooling fan(s).
INSTALLATION DRAWINGS

ORDERING INFO

Voltage:
208, 240, 380, 415, 480, or 575. Substitute voltage for X’s in this field.

Current:
85, 145, 175, 240, 295, 370, or 425. Substitute current for X’s in this field.
Larger frame sizes are available; consult factory.

Specify Command Signal:
- 0/5V = 0-5 Vdc Command
- 0/10V = 0-10 Vdc Command
- Pot = 1K to 20K Potentiometer

3027 - (XXX)V - (XXX)A - (XXXXXX)

[Diagram of 85, 145 & 175 AMP]

[Diagram of 240, 295, 370 & 425 AMP]